-
Optical materials discovery and design via federated databases and machine learning
V. Trinquet, M. Evans, C. Hargreaves, P.-P. De Breuck, and G.-M. Rignanese
Faraday Discuss. (2024)
-
Combination of ab initio descriptors and machine learning approach
for the prediction of the plasticity mechanisms in β-metastable Ti alloys
M. Coffigniez, P.-P. De Breuck, L. Choisez, M. Marteleur, M. J. Van Setten, G.
Petretto, G.-M. Rignanese, and P. J. Jacques
Materials & Design 239, 112801 (2024)
-
Influence of roughness and coating on the rebound of droplets on fabrics
P. J. Cruz, P.-P. De Breuck, G.-M. Rignanese, K. Glinel, A. M. Jonas
Surfaces and Interfaces 36, 102524 (2023)
-
A simple denoising approach to exploit multi-fidelity data for machine learning
materials properties
X. Liu, P.-P. De Breuck, L. Wang, G.-M. Rignanese
npj Comput. Mater. 8, 233 (2022)
-
Accurate experimental band gap
predictions with multifidelity correction learning
P.-P. De Breuck, G. Heymans, G.-M. Rignanese
J Mater. Inf. 2, 10 (2022)
-
Robust model benchmarking and bias-imbalance in data-driven materials science: a
case study on MODNet
P.-P. De Breuck, M. L. Evans, G.-M. Rignanese
J. Phys.: Condens. Matter 33, 404002 (2021)
-
Materials property prediction for limited datasets enabled by feature selection and
joint learning with MODNet
P.-P. De Breuck, G. Hautier, G.-M. Rignanese
npj Comput. Mater. 7, 83 (2021)
-
Vibrational properties of solids : a machine learning approach
P.-P. De Breuck, G.-M. Rignanese
Master Thesis (2019)